
A Survey on Interactive Grouping and Filtering
in Graph-based Software Visualizations

Ivica Aracic Thorsten Scḧafer Mira Mezini Klaus Ostermann

Software Modularity Lab
Department of Computer Science

Darmstadt University of Technology
aracic@stribor.de,{schaefer, mezini, ostermann}@informatik.tu-darmstadt.de

Abstract

Interactive grouping and filtering in software visualiza-
tion tools are essential mechanisms enabling the users to
build views that match the information needs of their soft-
ware comprehension task at hand. In this paper we sys-
tematically survey these mechanisms in eight graph-based
software visualization tools.

1 Introduction

Graph-based Software visualization can help in reason-
ing about software systems, which is an important prereq-
uisite for almost any software development task. An impor-
tant goal of software visualization is to provide, what we
call WYSIWYN (What You See Is What You Need) views
that

1. match the structure of the problem at hand, i.e., present
the information at the right level of abstraction, and

2. contain only relevant information

Such views are desirable as they ease the interpretation
of the view by (1) reducing the gap between the structure
of the problem at hand and the structure of the view [3],
and (2) reducing the amount of presented information, thus,
avoiding information overload [10, 15].

Hence, interactive grouping and filtering operations on
graph-based views are required. Grouping addresses the
first property of WYSIWYN views by enabling the user to
group elements of the view according to a common prop-
erty, thus introducing new abstractions to the view and clos-
ing the gap between the view and the problem structure. Fil-
tering supports the second property by allowing the user to
remove irrelevant information from the view. Finally, the

interactivity ensures that the user is able to incrementally
refine an initial view to match the needs of the task at hand.
This is an important property for general purpose tools. Be-
cause of the large class of potential software comprehension
tasks that they aim to cover, no automatism can be provided
that always constructs a perfect WYSIWYN view. In most
cases a user-driven refinement of the initial view will be re-
quired.

The main contribution of this paper is in providing a
minimal set of grouping and filtering operations on hierar-
chically structured (nested) graph models and in surveying
eight state-of-the-art tools with respect to their support for
these operations.

The rest of the paper is structured as follows. In Sec. 2,
we formalize the nested graph model and derive from it
four primitive operations and their corresponding inverses.
Sec. 3 demonstrates the application of the derived opera-
tions by means of an example. Sec. 4 presents the survey of
eight software visualization tools with respect to their inter-
active support for the stated primitive operations. Finally,
we conclude with Sec. 5.

2 Filtering and Grouping in Nested Graphs

A widely used metaphor in software visualization is the
nested graph. A nested graph is a hierarchically structured
graph with a hierarchy of nodes and a hierarchy of edges.
Such graphs are suitable for visualizing complex, hierarchi-
cally structured data like imposed by object-oriented soft-
ware systems.

In this section, we formalize the nested graph and derive
four primitive operations from it that support grouping and
filtering of graph’s elements, nodes and edges respectively.
The operations are primitive in the sense that they can not
be reconstructed by an arbitrary sequence of other primitive
operations.



Our formalism differs from other nested graph for-
malisms (e.g. [8]) in two points: (1) to best of our knowl-
edge no formalism, that we are aware of, considers the node
and the edge hierarchy as two symmetric structures and (2)
no formalism considers the grouping and filtering opera-
tions on nested graphs.

Nested Graph Model

LetN be a finite set of nodes andE ⊆ N×N a set of edges.
A node nestingcN is a finite mappingcN : N → P(N) and
an edge nestingcE is a finite mappingcE : E → P(E).
For a node nesting or an edge nesting (X = N or X = E),
the set of (direct and indirect) children of a node or edgex
is the smallest setc+

X(x) satisfying

c+
X(x) = cX(x) ∪

⋃
x′∈cX(x) c+

X(x′)

We define a reflective variant of this set as:

c∗X(x) = {x} ∪ c+
X(x).

Finally, we define anested graphas a tuple

G = (N,E, cN , cE , nroot) such that

1. Nodes and edges are organized in a strict hierarchy:
For all n ∈ N \ {nroot} there is a uniquen′ ∈ N
such thatn ∈ cN (n′). Analogously, for alle ∈ E \
{(nroot , nroot)} there is a uniquee′ ∈ E such thate ∈
cE(e′). The designated nodenroot is the root node:
c∗N (nroot) = N . Furthermore,(nroot , nroot) ∈ E and
c∗E(nroot , nroot) = E.

2. The edge hierarchy must conform to the node hierar-
chy: ∀e = (n1, n2), e′ = (n′

1, n
′
2) ∈ E.e′ ∈ c+

E (e) ⇒
n′

1 ∈ c∗N (n1), n′
2 ∈ c∗N (n2).

Note that invariant in (2) is required in order to make com-
posite edges interpretable in the context of a node hierarchy.
While the criteria how nodes are grouped is unrestricted,
the grouping criteria of edges must ensure that all contained
edges in a composite have the common property defined in
(2). I.e., for all children of an edge, the source node of the
child edge is the source node of the containing edge or a
child of it, and the target node of the child edge is the target
node of the containing edge or a child of it.

Group/Ungroup

The edge and node hierarchy of the nested graph corre-
sponds to the encoding of the problem structure. To be
able to match the structure of the task at hand, as re-
quired for WYSIWYN views, the user needs means for

tailoring these two hierarchies. Hence, the two hierar-
chies form the first two dimensions along which the nested
graph can be tailored. Two primitive operations and their
inverses are derived:groupN/ungroupN for nodes and
groupE/ungroupE for edges respectively.

For both hierarchies, we formalize these in the follow-
ing. The preconditions of the operations assure that the
defined nested graph invariants are preserved.

Operation: groupN : G×N × P(N) → G
Effect: A new noden is added and replacesp as common
parent of all nodes inns.
Precondition: ns ⊆ cN (p) andn /∈ N .
groupN ((N,E, cN , cE , nroot), n, ns) =

(N ∪ {n}, E, c′N , cE , nroot)

where c′N (x) =

 (cN (x) \ ns) ∪ {n} if x = p
ns if x = n
cN (x) else

Operation: ungroupN : G×N → G
Effect: The node is removed and all its children are added
to its parent.
Precondition: No edge inE touchesn andn 6= nroot .
ungroupN ((N,E, cN , cE , nroot), n) =

(N \ {n}, E, c′N , cE , nroot)

where c′N (x) =
{

cN (x) ∪ cN (n) if n ∈ cN (x),
cN (x) else

Operation: groupE : G×N ×N × P(E) → G
Effect: A new edge betweenn1 and n2 is added and
replacesp as common parent of all edges ines.
Precondition: (n1, n2) /∈ E, es ⊆ cE(p),∀(n, n′) ∈ es :
n ∈ c∗N (n1) ∧ n′ ∈ c∗N (n2)
groupE((N,E, cN , cE , nroot), n1, n2, es) =

(N,E ∪ {(n1, n2)}, cN , c′E , nroot)

where c′E(x) =


(cE(x) \ es)
∪ {(n1, n2)} if x = p

es if x = (n1, n2)
cE(x) else

Operation: ungroupE : G× E → G
Effect: Removes an edge and makes all child edges
top-level edges.
Precondition: e 6= (nroot , nroot)
ungroupE((N,E, cN , cE , nroot), e) =

(N,E \ {e}, cN , c′E , nroot)

c′E(x) =
{

cE(x) ∪ cE(e) if e ∈ cE(x),
cE(x) else



Filter/Unfilter

The second property of WYSIWYN views requires the
ability to filter irrelevant parts of the graph. Hence, for
each hierarchy we define one dimension along which the
filtering of nodes or edges can be applied. We define
primitive operationsfilterN/unfilterN for nodes and
filterE/unfilterE for edges, respectively.

To be able to filter a nested graph, we define a fil-
tered nested graphGfiltered as a nested graphG =
(N,E, cN , cE , nroot) together with two filter setsfN ⊆ N
andfE ⊆ E. The grouping and ungrouping operations re-
main unchanged, except that an ungroup operation removes
the corresponding node or edge fromfN or fE , if neces-
sary. For filtered nested graphs, we define four primitive
operations,filterN (Gfiltered , n), unfilterN (Gfiltered , n),
filterE(Gfiltered , e), unfilterE(Gfiltered , e), which just
add or remove the respective node or edge fromfN or fE .

For a filtered nested graph, we define a noden to be
visible, if n is nroot , or n /∈ fN and n ∈ cN (n′) of a
visible noden′. An edgee = (n1, n2) is visible, if e
is (nroot , nroot), or n1 and n2 are visible,e /∈ fE , and
e ∈ cE(e′) of a visible edgee′.

3 Example

In order to exemplify the usage of the primitive opera-
tions defined, we present how the ispace1 [2] tool was used
in a software comprehension task which arised during a
quality assessment of the prefuse project [13]. In concrete,
the prefuse’s dependencies were investigated with respect to
the package design principles stated by Martin [9]. Prefuse
[13] is a Java-based toolkit for building interactive infor-
mation visualization applications. It consists of approxi-
mately 17k non-commented, non-blank lines of code in 191
classes. For our experiment, we used version v20050401-
alpha.

Prefuse is a framework for visualizing data models as
graphs. For each model element, a corresponding visual
item exists that contains information about the graphical
representation. The visual items form a type hierarchy con-
taining the classesVisualItem , NodeItem , EdgeItem ,
andAggregateItem . The classes are used by many other
classes within prefuse. To ensure maintainability, we want
the classes that visual items depend on to be stable; other-
wise, changes there could propagate via the visual items to
large parts of prefuse.

For this purpose, we needed to analyze the dependencies
of the visual item classes. We needed to identify on which
classes they depend and in which packages these classes are
contained.

1http://ispace.stribor.de/

1

Figure 1. Initial view

1

Figure 2. Grouping the visual items

In the following we describe the steps performed with
the tool. Only primitive operations proposed in Sec. 2 are
used. Figures 1 to 8 show the successive steps performed
with ispace in order to come from the initial view to the final
WYSIWYN view. The initial view (Fig. 1) contains the
16 top-level elements (8 packages and 8 classes) of prefuse
with all dependencies between them. Note that even a view
with only 16 elements easily gets cluttered.
Step 1 –groupN : In the first step, the four classes com-
prising the visual item hierarchy (index 1 in Fig. 1) were
grouped together yielding the composite indexed with 1 in
Fig. 2.
Step 2 –filterN : Next, all packages and classes that are
not used by the visual item hierarchy are filtered. In ispace,
this is achieved by selecting corresponding elements and ap-
ply the filter operation. The resulting view is depicted in
Fig. 3.
Step 3 –filterE : While the removal of irrelevant nodes
made the view more clear, in the resulting view there are
still many relations which are not relevant for the task at



1

Figure 3. Filtering irrelevant elements

Figure 4. Filtering irrelevant relations

hand. As non-relevant, we consider all relations not starting
at “visual items”, e.g., the relations around index 1 in Fig. 3.
Hence, in this step all relations not starting at “visual items”
were selected and filtered, leading to the view depicted in
Fig. 4).
Step 4 –filterN : To investigate which classes within a
package are used by visual items, the children of the used
packages were unfiltered. Fig. 5 shows the view in which
this transformation is applied to the packagerender (index
1 in Fig. 5).
Step 5 –groupE : In a follow up step, the hierarchy of the
edges starting atvisual items was tailored by ungroup-
ing the composite relations ending at any package. Fig. 6
(cf. indexes 1 and 2) shows the result of ungrouping the
composite edge connecting the composite node for “visual
items” and the packagerender (index 2 in Fig. 5).
Step 6 –filterN : Now the dependencies of visual item
were explicit and all classes not used were filtered. Fig. 7
shows the result exemplary for therender package (index
1).

After performing steps four to six on the other packages,
the final WYSIWYN view is created (Fig. 8). It exactly
matches the structure of the problem by containing rep-
resentations for: the visual item type hierarchy (index 1),
classes used by the visual item hierarchy (e.g., index 2), use
relations (e.g., index 3), and the enclosing package of the
used classes (e.g., index 4). Moreover, all irrelevant infor-

1

Figure 5. Unfiltering a composite’s children

mation in the view is filtered away. This includes the unused
nodes and all relations except the desired relations starting
at thevisual items node.

Note that even for this very simple task we required all
proposed operations defined in Sec. 2.

4 Survey

Many software visualization tools support developers in
their comprehension tasks and most of them offer some in-
teractive support for grouping and filtering. For the eight
surveyed tools, we summarize the support provided as
shown in Table 1. A cross indicates that, for a given di-
mension, the tool directly or indirectly implements the pro-
posed primitive operations. Indirectly means that there is
a combination of available operations that yields the effect
of the proposed tailoring operations. For instance, none of
the tools directly supports unfiltering of a single node,n.
However, the same effect can be achieved by two steps: (a)
unfiltering all nodes, and (b) subsequently filtering all of
them butn.

In the following, we elaborate on the surveyed tools first
with respect to their support for grouping/ungrouping and
filtering/unfiltering, respectively.

groupN

Tools that support developers in gaining high-level
overviews of software tend to provide support for group-
ing and ungrouping of nodes and edges (groupN , groupE).
For instance, Gorton and Zhu [4] present an experience re-
port about architecture reconstruction tools. They found



groupN/ groupE/ filterN/ filterE/
Tool ungroupN ungroupE unfilterN unfilterE

Rigi [11] × − × −
SHriMP [18] − × × −
Relo [16] − − × ×
Softwarenaut [7] − − × ×
CodeCrawler [6] × − − −
Sotograph [17] − − × −
Bauhaus [1] × − × ×
ispace [2] × × × ×

Table 1. Interactive Tailoring Support in State-of-the-Art

12

Figure 6. Ungrouping a relation

that flexible abstractions are needed and the mapping in-
formation between different layers of abstraction needs to
be maintained. The model for software visualization tools
presented by Pacione [12] also contains several levels of ab-
straction, needed to support a broad range of software com-
prehension tasks.

Beside ispace, several of the surveyed tools provide sup-
port for interactively building arbitrary groups of nodes,
e.g., Rigi [11], Codecrawler [6], and Bauhaus [1]. They
enable the user to interactively group nodes in the presented
graph and build higher level abstraction useful for solving
the problem at hand.

The second group of tools including SHriMP [18], Soft-
warenaut [7], and Sotograph [17] enable the user to initially
define an arbitrary grouping of nodes at model construction
time, however, given some initial decomposition of the sys-
tem, no means are provided for interactive refinement of it.

This hinders the user in interactively constructing a view

1

Figure 7. Filtering non-used elements

1

2

4

3

Figure 8. Final WYSIWYN view

that matches the structure of his problem. Considering our
example from Sec. 3, the SHriMP user for instance is not
able to interactively construct a node representing all vi-
sual items (Fig. 9, index 1). Hence, dependencies start-
ing at visual items could also not be grouped. This clut-
tered the view with irrelevant details of the visual items hi-
erarchy. For instance, instead of representing the depen-
dency between the visual item hierarchy (index 3) and the
ItemRegistry (index 5) with a single edge, several edges
exist which can cause cognitive overload. Further, the rela-
tions of each element of the visual item hierarchy need to
be aggregated mentally: to understand all dependencies of



1

3

5

2

3

4

5

6

Figure 9. Task 1 (SHriMP)

the visual item hierarchy, the outgoing dependencies of all
visual item element have to be considered on its own.

The third group, which was only comprised of Relo [16],
had no support for user defined groupings of software ele-
ments at all. The grouping of its elements is completely
fixed to the primary decomposition of the visualized system
(e.g.: packages, classes, methods, and fields).

groupE

Analogously to grouping of nodes, a flexible grouping of
edges is required. Often lower-level relations need to be
aggregated at higher-level of abstractions. Moreover, details
of such aggregations need to be revealed as required by the
task. The support for this is often neglected as we can see
in the number of tools which support this operation (only
SHriMP and ispace).

The following two example demonstrate the problems
caused by missing support for grouping and un-grouping of
edges.

For instance, Rigi provides support for grouping nodes,
which enabled to construct a node representing all visual
items (Fig. 10, index 1) and a composite edge representing
its grouped relations (e.g., index 2)2. However, it lacks sup-
port for ungrouping edges. For instance, it is not possible to
ungroup the composite edges starting atvisual items in
order to find out which of the contained classes were actu-
ally used by the hierarchy.

2Please note that directed edges in Rigi have no arrowheads. Their
direction is encoded so that the source side of the the edge always starts at
the bottom of the source node and the target side always ends at the top of
the target node.

1 Visual Items

2

Util

Renderer

3

Figure 10. Task 1 (Rigi)

Another example is Relo, which lacks means for group-
ing lower-lever relations. As shown in Fig. 11, low-level
elements like methods and method-calls need to be visu-
alized in order to see the relation between two classes.
For instance, to visualize the relation betweenNodeItem

andTreeNode , the low-level relations between the classes’
methods need to be shown (Fig. 11, index 2; note that we
did not expand all relations for better readability of the dia-
gram).

filterN

Another way to cope with the complexity in software visu-
alization tools is to remove irrelevant information from the
view. Corresponding filtering mechanisms are available in
many tools.

For instance, exploration tools [5, 14, 16] naturally sup-
port filtering of nodes (filterN ). Typically, a developer
starts with a given program element and explores its neigh-
borhood by following different kinds of relations. Hence,
only some elements are visualized instead of the whole soft-
ware. Tailoring along this dimension is also supported by
most other visualization tools.

filterE

Most tools enable filtering all relations of a specific type,
e.g., all method-call or inheritance relationships; also filter-
ing of edges when one of their adjacent nodes is removed
to ensure a consistent graph is often supported. What is
often missing, however, is a possibility to filter individual
edges, or a set of edges selected by some arbitrary criteria.



1

2

3

4

5

Figure 11. Task 1 (Relo)

An exception is Relo [16] which enables filtering of both
individual nodes (filterN ) and individual edges (filterE).

In Fig. 9, we can observe the information overload
caused by the missing support for filtering edges in SHriMP.
For example, the dependencies shown in the view around
indexes 2 and 3 are completely irrelevant for the task at
hand. Especially theItemRegistry class (index 5) sig-
nificantly contributed to the cluttering of the view, because
it is related to almost any other element. Filtering this node
is not a solution, because this would also remove the rele-
vant information that this class is used by the visual item
hierarchy.

Survey Summary

Most of the surveyed tools lack support forgroupN ,
groupE , andfilterE . In the following we summarize the
problems caused by this.

Lack of groupN : Without means to group elements, one
cannot abstract from the individual elements. This implies
a) that the view is cluttered with too many details and b) that
the structure of the visualization does not match directly to
the structure of the problem, which hinders comprehension.

Lack of groupE : The effect of lacking means to group
edges is similar as for nodes: instead of a single composite
edge, many low-level edges are visualized, which clutter
the view. Hence, the right information is shown, but at the
wrong level of abstraction.

Lack of filterE : If no means exist to filter individual
edges, irrelevant information cannot be removed from the
view which also contributes to the clutter.

Support forfilterN is provided by almost any of the

surveyed tools and does not require further discussion.

5 Conclusion

Support for interactive grouping and filtering is one im-
portant requirement on software visualization tools. Group-
ing enables the user to close the gap between the structure
of the problem and the structure of the view. Filtering helps
in removing irrelevant information from the view. Interac-
tivity enables users to incrementally refine an initial view
on-the-fly as required by the current task.

In this paper we systematically formalized this require-
ment by defining the nested graph model and deriving four
primitive operations on this model.

Furthermore, we surveyed 8 software visualization tool
with respect to the proposed primitive operations. We ob-
served that none of the investigated tools provides full sup-
port for all identified operations. Nevertheless, evidence for
each operation was found at least in one of surveyed tools.
By means of an example we show that such tools fail in
providing what we call WYSIWYN views.

We conclude this paper with a recommendation for tool
developers to close the gap identified by the survey and pro-
vide complete support for all proposed operations.

References

[1] G. V. Aoun Raza and E. Pldereder. Bauhaus - a tool suite for
program analysis and reverse engineering. InReliable Soft-
ware Technologies, Ada-Europe 2006, LNCS(4006), pages
71–82, 2006.

[2] I. Aracic and M. Mezini. Flexible abstraction
techniques for graph-based visualizations. http:
//www.sciences.univ-nantes.fr/lina/atl/
www/papers/eTX2006/02-IvicaAracic.pdf ,
2006.

[3] D. J. Gilmore and T. R. Green. Comprehension and recall of
miniature programs.International Journal of Man-Machine
Studies, 21(1):31–48, 1984.

[4] I. Gorton and L. Zhu. Tool support for just-in-time archi-
tecture reconstruction and evaluation: an experience report.
In Proceedings of the International Conference on Software
Engineering, pages 514–523. ACM Press, 2005.

[5] D. Janzen and K. De Volder. Navigating and querying
code without getting lost. InProceedings of the Inter-
national Conference on Aspect-oriented Software Develop-
ment, pages 178–187. ACM Press, 2003.

[6] M. Lanza. Codecrawler—lessons learned in building a soft-
ware visualization tool. InProceedings of the European
Conference on Software Maintenance and Reengineering,
pages 409–418. IEEE Computer Society, 2003.

[7] M. Lungu and M. Lanza. Softwarenaut: Exploring hierar-
chical system decompositions. InProceedings of the Euro-
pean Conference on Software Maintenance and Reengineer-
ing, pages 351–354. IEEE Computer Society, 2006.



[8] A. J. Malton and R. C. Holt. Boxology of nba and ta: A ba-
sis for understanding software architecture. InProceedings
of the Working Conference on Reverse Engineering, pages
187–195. IEEE Computer Society, 2005.

[9] R. C. Martin. Agile Software Development. Principles, Pat-
terns, and Practices. Prentice Hall, 2002.

[10] G. A. Miller. The magical number seven, plus or minus
two: Some limits on our capacity for processing informa-
tion. Psychological Review, 63:81–97, 1956.

[11] H. A. Müller and K. Klashinsky. Rigi – a system for
programming-in-the-large. InProceedings of the Interna-
tional Conference on Software Engineering, pages 80–86.
IEEE Computer Society, 1988.

[12] M. Pacione. A novel software visualization model to sup-
port object-oriented program comprehension. PhD thesis,
University of Strathclyde, Glasgow, 2005.

[13] Prefuse.http://www.prefuse.org .
[14] T. Scḧafer, M. Eichberg, M. Haupt, and M. Mezini. The

SEXTANT software exploration tool.IEEE Transactions
on Software Engineering, 32(9):753–768, 2006.

[15] J. Sillito, K. De Volder, B. Fisher, and G. Murphy. Managing
software change tasks: An exploratory study. InProceed-
ings of the International Symposium on Empirical Software
Engineering, pages 23–32. IEEE Computer Society, 2005.

[16] V. Sinha, D. Karger, and R. Miller. Relo: Helping users
manage context during interactive exploratory visualization
of large codebases. InProceedings of the Symposium on Vi-
sual Languages and Human-Centric Computing, pages 187–
194. IEEE Computer Society, 2006.

[17] Sotograph.http://www.sotograph.com .
[18] M.-A. D. Storey and H. A. M̈uller. Manipulating and doc-

umenting software structures using SHriMP views. InPro-
ceedings of the International Conference on Software Main-
tenance, pages 275–284. IEEE Computer Society, 1995.


